Protein transduction domains fused to virus receptors improve cellular virus uptake and enhance oncolysis by tumor-specific replicating vectors.

نویسندگان

  • Florian Kühnel
  • Bernd Schulte
  • Thomas Wirth
  • Norman Woller
  • Sonja Schäfers
  • Lars Zender
  • Michael Manns
  • Stefan Kubicka
چکیده

Expression of cellular receptors determines viral tropism and limits gene delivery by viral vectors. Protein transduction domains (PTDs) have been shown to deliver proteins, antisense oligonucleotides, liposomes, or plasmid DNA into cells. In our study, we investigated the role of several PTD motifs in adenoviral infection. When physiologically expressed, a PTD from human immunodeficiency virus transactivator of transcription (Tat) did not improve adenoviral infection. We therefore fused PTDs to the ectodomain of the coxsackievirus-adenovirus receptor (CAR(ex)) to attach PTDs to adenoviral fiber knobs. CAR(ex)-Tat and CAR(ex)-VP22 allowed efficient adenoviral infection in nonpermissive cells and significantly improved viral uptake rates in permissive cells. Dose-dependent competition of CAR(ex)-PTD-mediated infection using CAR(ex) and inhibition experiments with heparin showed that binding of CAR(ex)-PTD to both adenoviral fiber and cellular glycosaminoglycans is essential for the improvement of infection. CAR(ex)-PTD-treated adenoviruses retained their properties after density gradient ultracentrifugation, indicating stable binding of CAR(ex)-PTD to adenoviral particles. Consequently, the mechanism of CAR(ex)-PTD-mediated infection involves coating of the viral fiber knobs by CAR(ex)-PTD, rather than placement of CAR(ex) domains on cell surfaces. Expression of CAR(ex)-PTDs led to enhanced lysis of permissive and nonpermissive tumor cells by replicating adenoviruses, indicating that CAR(ex)-PTDs are valuable tools to improve the efficacy of oncolytic therapy. Together, our study shows that CAR(ex)-PTDs facilitate gene transfer in nonpermissive cells and improve viral uptake at reduced titers and infection times. The data suggest that PTDs fused to virus binding receptors may be a valuable tool to overcome natural tropism of vectors and could be of great interest for gene therapeutic approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prokaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70

Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...

متن کامل

LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus.

Vesicular stomatitis virus (VSV) exhibits a remarkably robust and pantropic infectivity, mediated by its coat protein, VSV-G. Using this property, recombinant forms of VSV and VSV-G-pseudotyped viral vectors are being developed for gene therapy, vaccination, and viral oncolysis and are extensively used for gene transduction in vivo and in vitro. The broad tropism of VSV suggests that it enters ...

متن کامل

Adenoviruses Using the Cancer Marker EphA2 as a Receptor In Vitro and In Vivo by Genetic Ligand Insertion into Different Capsid Scaffolds

Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob do...

متن کامل

Cell Cycle Progression or Translation Control Is Not Essential for Vesicular Stomatitis Virus Oncolysis of Hepatocellular Carcinoma

The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combin...

متن کامل

Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability.

Viral oncolysis, the destruction of cancer cells by replicating virus, is an experimental cancer therapy that continues to be explored. The treatment paradigm for this therapy involves successive waves of lytic replication in cancer cells. At present, monitoring viral titer at sites of replication requires biopsy. However, repeat serial biopsies are not practically feasible for temporal monitor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 78 24  شماره 

صفحات  -

تاریخ انتشار 2004